Calculus of Variations in L^{∞}

Ed Gallagher

 \mathbf{PSS}

October $13^{\text{th}} 2022$

Ed Gallagher L^{∞} CoV

University of Bath

ъ

・ロト ・ 日 ・ ・ 正 ・ ・

Outline		

- **1** Introduction
- 2 'Standard' Approach: Euler-Lagrange Equations
- **3** L^p Approximation
- 4 Example
- **5** My Work (geometric problems; curvature)

(日)

Introduction		

Introduction

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Ed Gallagher L^{∞} CoV

University of Bath

Calculus of variations: find minimisers of functionals $\mathcal{F} \colon X \to \mathbb{R}$ where X is some (carefully chosen) function space

(日)

University of Bath

Examples:

- Brachistochrone problem
- Elastica problem
- Isoperimetric problem
- Willmore conjecture / Helfrich energy
- Optimal transport
- Various physics/applied problems

Introduction		

Normally \mathcal{F} is an integral:

Elastica problem :
$$\int_{\gamma} \kappa^2 ds$$

Optimal transport : $\int_{X \times Y} c(x, y) d\gamma(x, y)$
Willmore conjecture : $\int_{\Sigma} H^2 d\mu$

・ロト ・日下・ ・ ヨト・

э

but this does not have to be the case...

Introduction Euler-Lagrange L^p Approximation Example My Work

Calculus of Variations in L^{∞} (" L^{∞} CoV") is the study of variational problems where the functional \mathcal{F} is a supremum (i.e. L^{∞} norm):

 ∞ -elastica problem: ess sup $|\kappa| = ||\kappa||_{L^{\infty}}$,

 L^∞ Optimal transport: $\gamma - \mathop{\mathrm{ess\,sup}}_{(x,y)} |c(x,y)| = \|c\|_{L^\infty}$

 ∞ -Willmore surfaces: ess sup $|H| = ||H||_{L^{\infty}}$

メロト メポト メヨト メヨ

Important Milestones:

1960's: Aronsson: simple, first-order functionals 2010's: second order functionals, geometric analysis

Motivation:

Fundamental interest; generalisation of interesting 'standard' CoV

Use in applications- "minimises maximum error"

メロト メポト メヨト メヨ

Euler-Lagrange		

Euler-Lagrange Equations

Ed Gallagher L^{∞} CoV

University of Bath

How do we analyse solutions of variational problems? First: solutions have to exist!

"Direct method": take minimising sequence, show it converges to a minimiser

This is technical so ignore it here

イロト イヨト イヨト

Euler-Lagrange equations:

Critical points x of $f: \mathbb{R} \to \mathbb{R}$ solve $\frac{\mathrm{d}}{\mathrm{d}\varepsilon} f(x+\varepsilon) \Big|_{\varepsilon=0} = 0$ Critical points x of $f: \mathbb{R}^n \to \mathbb{R}$ solve $\frac{\mathrm{d}}{\mathrm{d}\varepsilon} f(x+\varepsilon v) \Big|_{\varepsilon=0} = 0$ for all $v \in \mathbb{R}^n$ So critical points f of \mathcal{F} should also have "zero derivative in

every direction" i.e.

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\mathcal{F}[f+\varepsilon\phi]\Big|_{\varepsilon=0} = 0$$

・ロト ・ 一下・ ・ ヨト・

University of Bath

for all "suitable" functions ϕ .

Euler-Lagrange		

Example: shortest path between two points

Ed Gallagher L^{∞} CoV

	L^p Approximation	

L^p Approximation

 L^{∞} CoV

	L^p Approximation	

Problem: for L^{∞} problems, \mathcal{F} isn't differentiable! So

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\mathcal{F}[f+\varepsilon\phi]\Big|_{\varepsilon=0} = 0$$

・ロト ・ 一下・ ・ ヨト ・

э

University of Bath

is nonsense.

Solution: " L^p approximation"

Recap: L^p spaces:

 L^p norm: weighted average of f over a domain Ω :

$$\|f\|_{L^p} = \left(\int_{\Omega} |f|^p \,\mathrm{d}x\right)^{\frac{1}{p}}$$

and $L^p(\Omega) := \{ f : ||f||_{L^p} < \infty \}.$

In the limit, all the weight goes to the extreme points of f:

$$\lim_{p \to \infty} \|f\|_{L^p} = \|f\|_{L^\infty} = \operatorname{ess\,sup} |f|$$

メロト メポト メヨト メヨ

University of Bath

Ed Gallagher L^{∞} CoV

Idea: $\|\cdot\|_{L^p}$ "approximates" $\|\cdot\|_{L^{\infty}}$. So we approximate the non-differentiable $\mathcal{F} = \|\cdot\|_{L^{\infty}}$ by the differentiable $\|\cdot\|_{L^p}$. This is the idea of L^p approximation: **1** Consider L^p problem for $p \in [1, \infty)$ **2** Compute Euler-Lagrange for L^p problem 3 Send $p \to \infty$, get convergence of $\begin{cases} L^p \text{ minimisers } \to L^\infty \text{ minimiser} \\ L^p \text{ E-L equations } \to ``L^\infty \text{ E-L" equation (hard)} \end{cases}$ 4 Analyse limiting equation to learn about L^{∞} minimisers

 L^p Approximation

・ロト ・ 一下・ ・ ヨト・

L^p approximation originated in the 60's with Aronsson and is a well-known tool in L^∞ CoV

<ロト < 同ト < 三ト < 三ト

University of Bath

I use it for my research (finding shapes which minimise L^∞ curvature)

	Example	

Example Problem

Ed Gallagher L^{∞} CoV Introduction Euler-Lagrange L^p Approximation **Example** My Work

Minimise the quantity $||f''||_{L^{\infty}}$ over all functions $f: [0,1] \to \mathbb{R}$ with given boundary data up to first derivatives:

$$f(0) = a_1, f(1) = a_2, f'(0) = b_1, f'(1) = b_2.$$

メロト メポト メヨト メヨ

University of Bath

Technically, we minimise over the function space $W^{2,\infty}_{f_0}(0,1)$.

(Assume no 'trivial solutions' exist, i.e. no straight lines)

Approximating problem: Minimise the quantity $||f''||_{L^p}$ over $W^{2,p}_{f_0}(0,1)$.

	Example	

Steps 1 & 2: approximating problem: Minimise the quantity $||f''||_{L^p}$ over $W_{f_0}^{2,p}(0,1)$.

Computations show that a minimiser f_p satisfies the Euler-Lagrange equation

$$\left(|f_p''|^{p-2}f_p''\right)'' = 0.$$

(日)

University of Bath

Ed Gallagher L^{∞} CoV

Introduction	Euler-Lagrange	L ^r Approximation	Example	My Work

Step 3:

We know $(|f_p''|^{p-2}f_p'')'' = 0$, but $|f_p''|^{p-2}f_p''$ may behave badly as $p \to \infty$ (either blow up to ∞ or shrink to 0). We normalise to stop this happening: Set $g_p = C_p |f_p''|^{p-2} f_p''$ with the normalisation constant C_p such that the system

$$g_p'' = 0,$$

$$f_p'' = \|f_p''\|_{L^p} |g_p|^{\frac{1}{p-1}} \frac{g_p}{|g_p|}$$

イロト イヨト イヨト イ

University of Bath

holds.

Ed Gallagher L^{∞} CoV

After some analysis, we get the convergence we need: (f_p) , (g_p) converge to functions f and g such that:

- f is a minimiser of our L^{∞} problem,
- The system of equations

$$g'' = 0,$$

 $|g|f'' = ||f''||_{L^{\infty}}g$

is satisfied.

Ed Gallagher

 L^{∞} CoV

University of Bath

・ロト ・ 一下・ ・ ヨト ・

	Example	

Step 4:

Since g'' = 0, g must be linear i.e. g(x) = ax + b. From $|g|f'' = ||f''||_{L^{\infty}}g$ we find:

• Where $g > 0, f'' = + ||f''||_{L^{\infty}};$

• Where
$$g < 0, f'' = -||f''||_{L^{\infty}};$$

• g = 0 happens at a single point so it doesn't matter. We conclude that f is made up of two parabolas, 'joined together' at the zero of g in such a way that the values of f and f' match

(日)

University of Bath

	Example	

After some (messy) maths, we can actually get an explicit expression for f in terms of the boundary data.

 L^{∞} CoV

(日)

	Example	

Example where f(0) = 0, f(1) = 1, f'(0) = 2, f'(1) = 1:

▲≣▶ ≣ ∽へ University of Bath

・ロト ・回ト ・ヨト ・ヨ

Ed Gallagher L^{∞} CoV

	Example	

Example where f(0) = 1, f(1) = -1, f'(0) = 0, f'(1) = 1:

University of Bath

Image: A matrix

Ed	Gallagher
L^{∞}	CoV

This example is simple but highlights some characteristic features of L^{∞} minimisers:

- Low regularity
- Magnitude either constant or zero
- Sign governed by limiting equations

・ロト ・ 一下・ ・ ヨト ・

		My Work

Ed Gallagher L^{∞} CoV

University of Bath

		My Work

Interface of geometric analysis & L^∞ CoV: minimising L^∞ curvature

e.g. among all curves with fixed length and boundary data, which ones minimise L^{∞} curvature? What do they look like? 2D problem: minimise L^{∞} norm of *mean curvature* of surface Interesting topological/analytical problems

(日) (同) (三)

University of Bath